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Abstract

The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large
length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems,
termed the binomial s-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distri-
bution based s-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles
instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can
lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been real-
ized yet. Here we extend the binomial s-leap method to lattice KMC simulations by combining it with spatially adaptive
coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations
provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-
graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys
the absolute stability limit for values of r up to near 1.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Kinetic Monte Carlo (KMC) on a lattice has extensively been employed to study dynamic and equilib-
rium phenomena in diverse areas ranging from catalysis to crystal growth to surface diffusion and phase
transitions on single crystals to transport in microporous materials to cell membrane receptor dynamics
[2–7]. KMC provides the exact solution of an underlying master equation along with information about
correlations, fluctuations, spatial distributions, etc. These traits make KMC a powerful tool for modeling
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molecular scale and noise-dependent phenomena that are crucial, for example, in nucleation and growth,
phase transitions, and pattern formation. However, KMC simulation is computationally intensive, and as a
result, despite the increase in computational power, is restricted to small lattices and short time scales.

An appealing multiscale paradigm builds upon coarse-graining of the same simulation tool resulting in
multiscale molecular methods. Different strategies for arriving at coarse-grained or mesoscopic models are
currently being explored. In the top-down approach, one postulates the rules of the coarse-grained simula-
tion tool (e.g., coarse potential of interactions, transition probabilities, etc.) by attempting to match an out-
come of the molecular and coarse-grained simulators. A common outcome used in off lattice simulations is
the radial distribution function. Reviews describing methods, limitations of the top-down approach of
molecular simulation, and examples are given in [8–10].

In the bottom-up approach, one starts from the microscopic description and through non-equilibrium sta-
tistical mechanics attempts to derive the coarse-grained rules. It is this latter strategy that is being discussed
here. The coarse-grained Monte Carlo (CGMC) method [11–13] is such a bottom-up spatial coarse-graining
method that groups lattice sites into coarse cells to study lattice dynamics and equilibrium. The idea of group-
ing in CGMC is reminiscent of renormalization group theory [14,15]. However, CGMC is conceptually
different from the latter that focuses on determining critical exponents of equilibrium systems typically with
first nearest neighbor interactions. The adaptive CGMC (ACGMC) [16,17] is an extension of CGMC that
employs adaptive spatial coarse-graining to resolve with accuracy and low computational cost large gradients
in solutions. An alternative approach is the wavelet acceleratedMonte Carlo (WAMC) method that employs
wavelet transformations of the Hamiltonian to determine thermodynamic properties [18,19].

Temporally CGMC techniques have also been developed. In particular, the s-leap methods that coarse-
grain time were developed for studying dynamics and equilibrium in well-mixed (spatially homogeneous)
reacting systems. Different implementations, such as the explicit, implicit and trapezoidal s-leap methods,
using different distributions for generating random deviates, have been proposed [1,20–23].

Methods that simultaneously coarse grain space and time for spatially distributed systems are currently
lacking. In this paper, a new coarse-grained method called the s-leap adaptive coarse-grained Monte Carlo
(s-leap ACGMC) method is introduced that simultaneously coarse-grains space and time of lattice KMC.
The method combines the binomial s-leap method of [1] and the ACGMC of [16] for time and space,
respectively. These methods are first outlined and the new multiscale Monte Carlo method is subsequently
introduced. The issues of accuracy, computational requirements and absolute stability of the s-leap
ACGMC are analyzed and numerically assessed in the grand-canonical, canonical, and combined ensem-
bles using prototype systems. Finally, conclusions are drawn.
2. Stochastic simulations of spatially homogeneous systems

The KMC, also referred to as exact stochastic simulation algorithm or dynamic Monte Carlo, of [24,25]
follows the dynamics at a discrete level of description as a Markov process. Consider a well mixed system
with Nsp species Si, i = 1,2, . . .,Nsp, among M reactions Rj, j = 1, . . .,M. A reaction event is selected based
on the transition probability per unit time (often referred to as the propensity) aj of all chemical reactions at
time t (for details refer to [24,25]). This procedure is repeated and populations are tracked in time.

The original KMC method is extremely slow, especially when large populations of species are encoun-
tered. To improve the efficiency of the technique, an approximate stochastic simulation method, termed the
s-leap method, was introduced by Gillespie [20]. Instead of executing one reaction event at a time, in s-leap
methods a �bundle� of events are allowed to trigger during a time interval [t,t + s) and the time is advanced
by a mesoscopic amount s. A central assumption in the s-leap method, termed as the leap condition [20],
requires s to be sufficiently small so that the change in species population Xi, i = 1, . . .,Nsp, is small. In prac-
tice one is interested in choosing s as large as possible in order to reach long times.
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The original Poisson distribution based s-leap method developed by Gillespie samples the reaction bun-
dle size kj for reaction Rj, i.e., the number of times Rj is executed during s, using a Poisson distribution. The
Poisson distribution random variable is unbounded. As a result, negative populations are encountered
[1,26], when kj exceeds the reactant population size. This is especially the case for small populations or long
simulations. Recently, two binomial distribution based s-leap methods were proposed [1,23] to overcome
the negative population issue of the original algorithm. There are subtle differences between the two
methods that may potentially lead to different computational behavior.

In the binomial s-leap method [1], the number of events kj of each reaction Rj in a time increment s is
sampled using the binomial distribution
PBDðkj; pj; kjmaxÞ ¼
kjmax!

kj!ðkjmax � kjÞ!
pkjj ð1� pjÞ

kjmax�kj . ð1Þ
Here kjmax is the limiting reactant population size for each reaction, and pj ¼ minðajs=kjmax; 1Þ is the prob-
ability associated with a successful event among kjmax possible events. Eventually, once kj for all M reactions
are determined, the species populations are updated according to
X iðt þ sÞ ¼ X iðtÞ þ
XM
j¼1

mijkj; i ¼ 1; 2; . . . ;N sp ð2Þ
and the time is incremented to t + s.
There are various methods introduced in [1,20,27] to choose the time increment s. In this paper, s is

determined using a simple, inexpensive criterion [1] termed the r-criterion
s ¼ rmin
i

X i

XM
j¼1
mij<0

jmijjaj

, 1
CCA

0
BB@ ; ð3Þ
where 0 < r < 1 is a user specified temporal coarse-graining factor. Later it will be shown for prototype
examples that the value of r � 1 is closely related to the onset of numerical instabilities in the
algorithm.

Numerical simulations for simple reaction networks [1] and complex biological networks [28] demon-
strated that the method accurately captures the probability density function (pdf) of the time-dependent
species populations for small s. Furthermore, fluctuations are usually more accurately captured using
the binomial s-leap method than the Poisson s-leap method.
3. Stochastic simulations of spatially distributed lattice systems

3.1. The microscopic lattice-gas model for variable-ranged interactions

The physical system is represented by a microscopic lattice L of N lattice sites in contact with a fluid
phase. Each lattice site represents a local minimum of the potential energy surface, and can be either occu-
pied by an adsorbed atom/molecule or vacant. For a single adsorbed species the lattice-gas model [29] is
analogous to the Ising model, and the two possible states of a lattice site p 2 L, p = 1, . . .,N, are given
by its occupation function
rp ¼
0; unoccupied site p;

1; occupied site p.

�
ð4Þ
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The strength of lateral adsorbate–adsorbate interactions is described by a two-body intermolecular po-
tential J(r) where r is the distance between site p and any other site. The convention used is that J(r) > 0
(<0) for attractive (repulsive) interactions. Piecewise continuous interactions of the form
JðrÞ ¼
J 0=n; 1 6 r 6 L;

0; r > L

�
ð5Þ
are assumed in this paper, where L is the length of intermolecular potential, n is the number of interacting
lattice sites, bJ 0 ¼ b

P
16r6LJðrÞ is the dimensionless zeroth moment of the potential, b = (kBT)

�1, kB is the
Boltzmann constant, and T is the absolute temperature.

Processes such as adsorption, desorption, surface diffusion and reaction result in exchange of atoms
and/or molecules between the lattice sites and the fluid phase. Transition probabilities per unit time
for these processes are employed in a lattice KMC simulation to study the evolution of the configuration
space r, i.e., the vector of occupation functions. In this paper, the role of interactions in the transition
probabilities per unit time is modeled using Arrhenius dynamics [5], i.e., the activation energy for desorp-
tion and hopping from one site to a neighboring empty site depends only on the strength of adsorption
from the departing site and accounts for adsorbate–adsorbate interactions [30].

3.2. Spatially adaptive coarse-grained model

A brief outline of adaptive coarse-grained model is given here. For details see [16,17]. In ACGMC,
microscopic sites of L are grouped into m coarse cells (each cell denoted as Ck, 1 6 k 6 m) of a coarse lat-
tice Lc. The number of lattice sites qk in Ck is variable, i.e., Lc is non-uniform. Note that qk and m are
integers and

Pm
k¼1qk ¼ N . Furthermore, the original coarse-grained MC (CGMC) [11–13] is simply a spe-

cial case of ACGMC when qk is the same for all cells. The coarse-grained occupancy function at Ck is
gk ¼

P
p2Ck

rp, such that 0 6 gk 6 qk.
The coarse-grained transition probabilities, interaction energy andHamiltonians are derived by projecting

the corresponding microscopic entities of L onto Lc [16], which are then used to study the evolution of the
vector of coarse-grained occupation functions g using KMC. First, a Haar wavelet basis is employed to
coarse-grain the interaction potential. One assumes local mean-field inside a coarse cell. The coarse-grained
Hamiltonian and the coarse-grained interaction energy are expressed in terms of the coarse intercell interac-
tions �Jkl between atoms in cells Ck and Cl and the intracell interactions �Jkk of atoms in Ck and are given by
�HðgÞ ¼ � 1

2

X
k2Lc

X
l2Lc

�Jklgkgl þ
X
k2Lc

�Jkkgkðgk � 1Þ
" #

þ
X
k2Lc

�hgk; ð6Þ
and
�Uk ¼ �Jkkðgk � 1Þ þ
X
l2Lc
l 6¼k

�Jklgl � �h; ð7Þ
respectively. Here �h is the external field, e.g., chemical potential. Overbars are used to denote coarse-grained
variables.

The expressions of transition probabilities per unit time are postulated so that they reduce to the micro-
scopic ones when qk = 1, k = 1, . . .,m. Furthermore, the unknown pre-factors in these expressions are com-
puted so that detailed balance is obeyed and the microscopic and coarse processes result in the same
continuum mesoscopic models upon �complete� coarse-graining. Coarse-grained transition probabilities
derived for typical surface processes are tabulated in Table 1. The derivations are given in [16,17].

ACGMC accurately captures the dynamics, equilibrium, and spatial fluctuations [16,17]. In particular,
when the potential of interactions is long-ranged, considerable coarse-graining is allowed without



Table 1
List of coarse-grained transition probabilities per unit time for surface processes at coarse cells Ci and Cj [16,17]

Process Coarse-grained transition probabilities per unit time

Adsorption �aaðiÞ ¼ KaP ðq� giÞ
Desorption �adðiÞ ¼ Kdgie

�b �Ui

Diffusion (nearest cell jump is assumed) �amði ! jÞ ¼ Cm
qiqjðqiþqjÞ

giðqj � gjÞe�b �Ui

Unimolecular reaction �arðiÞ ¼ Krgi
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significant errors. The CPU requirements to reach the same real time in grand-canonical ensemble (adsorp-
tion–desorption) simulations using a uniform coarse lattice of cell size q are reduced by q and q2 for short
and long potentials, respectively [12]. Likewise, in the canonical ensemble (diffusion) the corresponding
reduction is q3 and q4 times for short and long potentials, respectively [11]. The error in the ACGMC solu-
tion can be estimated using information loss theory [12]. Recently, systematic adaptive grid generation tech-
niques have been developed that use such information loss theory based error estimates to refine the mesh
wherever errors are large [17,31].
4. The proposed s-leap ACGMC method

Despite the time acceleration of ACGMC, the execution of the algorithm still follows the ‘‘one process at
a time’’ approach of microscopic lattice KMC. Thus far, the s-leap methods have exclusively been used to
model spatially uniform, well-mixed systems. The s-leap methods cannot be directly implemented for a
microscopic lattice since any surface process would result in a population change (in the occupation func-
tion) that violates the leap condition. On the other hand, if the cell sizes qi, i = 1, . . .,m, of a coarse lattice
are sufficiently large, then the s-leap method can be combined with the ACGMC method, without violating
the leap condition given that the time increment s is not as large.

Here the binomial s-leap method of [1] is combined with the ACGMC method to study the evolution of
the coarse-grained occupation state vector. The robustness of the binomial s-leap method is crucial in pre-
venting negative populations and accurately describing spatio-temporal phenomena. The implementation
of the new method, termed as (binomial) s-leap ACGMC method, is straightforward. For simplicity consider
a single component system. There are two species, namely, adsorbed species and vacant sites. The adsorbed
and vacant site populations in Ck are given by gk and ck = qk � gk, respectively. The total number of species
is twice the number of cells m, Nsp = 2m, and the total number of coarse-grained surface processes is
M = mp. Here p is the number of surface processes at a microscopic site. For instance, p = 2 if only adsorp-
tion and desorption are present, p = 2 for diffusion on a 1D lattice (jumps to the left and right), and p = 4 if
all adsorption, desorption, and 1D surface diffusion occur simultaneously. The aforementioned counting
implies periodic boundary conditions. Note that M is mesh dependent, and boundaries in boundary value
problems could involve different processes affecting the precise values of M and Nsp.

The transition probabilities per unit time of each coarse-grained surface process are functions of gk and
ck, k = 1, . . .,m, as shown in Table 1 and the coarse-grained surface processes in each coarse cell are anal-
ogous to reactions in well-mixed systems. For example, adsorption in Ck is written as a unimolecular
reaction
Aþ Sk ! ASk; ð8Þ

desorption as a unimolecular reaction
ASk ! Aþ Sk; ð9Þ
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and diffusion as a bimolecular reaction
ASk þ Sj ! ASj þ Sk; ð10Þ

where A is an atom/molecule in the fluid phase, Sk is a vacant site in Ck, Sj is a vacant site in a neighboring
cell Cj and ASk denotes an adsorbed species in Ck. The former two reactions are reminiscent of the revers-
ible isomerization reaction that has been studied extensively in a well-mixed (spatially homogeneous) batch
reactor. Note that these lattice processes are termed unimolecular or bimolecular reactions because, even
though other species (neighboring adsorbed molecules) affect the transition probabilities through the inter-
action energy, only the populations of one or two species are affected by the particular process. The defi-
nition of gk and ck ensures mass conservation at the coarse cell level, i.e., gk + ck = qk, k = 1, . . .,m. A
significant difference from the well-mixed case in a batch reactor is that the corresponding connectivity
or reaction matrix of various species is sparse, as compared to the relatively dense matrix of a reaction net-
work, but the transition probabilities may depend on the occupation function of multiple cells in the case of
long-ranged interactions. The population-dependent rate constants are reminiscent of variable volume sim-
ulations used in cell biology studies (see discussion in [32]).

Below the accuracy and computational requirements of the s-leap ACGMC are assessed using prototype
examples and compared to those of ACGMC where one event per time is executed. Long-ranged interac-
tions are used throughout this paper in order for the local mean-field assumption within each cell to be
valid. The validity of the ACGMC in comparison to the microscopic KMC can be found in [11,12,31].
An analysis is also carried out to gain insight into the absolute stability of the algorithm and the compu-
tational requirements in terms of the lattice size and the spatial and temporal coarse-graining factors, q and
r, using first a uniform mesh. A non-uniform mesh simulation with combined processes is presented later.
For all cases, the desorption and migration parameters Kd = 1 s�1 and Cm = 3000 s�1 are fixed (see Table 1
for their exact meaning).
5. Grand-canonical ensemble (adsorption and desorption on a lattice)

5.1. Accuracy

First adsorption and activated desorption on an initially empty 1D lattice (grand-canonical ensemble) is
studied using periodic boundary conditions for two parameter sets using the ACGMC and s-leap ACGMC
methods. The lattice contains N = 20,000 microscopic sites. Two uniform coarse lattices with m = 2000 and
200 coarse cells (spatial coarse-graining of q = 10 and 100, respectively) were employed. This level of
coarse-graining corresponds roughly to a small 3 · 3 coarse cell and a 10 · 10 coarse cell of a 2D lattice.

Fig. 1 compares the spatially averaged coverages and Hamiltonians of the two methods. Results are
shown only for the finest mesh of q = 10. Similar results are obtained for coarser lattices as well. The s-leap
ACGMC method gives correct dynamics and equilibrium for temporal coarse-graining factors up to
r 6 0.2, even though each coarse cell contains roughly 3–5 adsorbed molecules. The excellent agreement
observed in the Hamiltonians in Fig. 1(b) indicates that the s-leap ACGMC accurately captures spatial cor-
relations. Error (shown only in Fig. 1(a)) is observed for a larger temporal coarse-graining factor (r = 0.3)
during the transient where the cells are basically empty. Similar error in transients is also found for q = 100
when r > 0.3 (not shown). The maximum value of r that provides accurate solutions is consistent with stud-
ies of reaction networks in a well-mixed reactor [1,28] and is rationalized below.

Besides the expected value of the coverage, the standard deviation is important when modeling fluctu-
ation-driven phenomena, such as phase transitions and pattern formation. The fluctuations are measured
at equilibrium in terms of the standard deviation in the average coverage h in Fig. 2 as the equilibrium con-
stant KaP/Kd varies. Here h is defined as the spatial average of the fraction of occupied sites, i.e.,
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h ¼ 1

m

Xm
k¼1

hgki=qk; ð11Þ
Æ æ denotes ensemble average. The standard deviation is symmetric about h = 0.5. The s-leap ACGMC
method provides accurate fluctuations for sufficiently low values of r.

The corresponding average bundles per cell in the s-leap ACGMC simulations are shown in Fig. 3. At
equilibrium, nearly 10 times larger bundles adsorb/desorb for q = 100, as compared to q = 10. The average
bundle size per cell in the s-leap ACGMC method (�0.4 for q = 10 and �4 for q = 100) is substantially
larger than the corresponding value of a single event per cell of ACGMC (5 · 10�4 for q = 10 and
5 · 10�3 for q = 100). The probability distributions of adsorption and desorption bundle sizes per cell at
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equilibrium are shown in Fig. 4. Both the spatial coarse-graining factor q and the temporal coarse-graining
factor r affect the bundle size. However, as shown below the bundle size is of little importance for the s-leap
ACGMC computational speed-up and in fact, it is the size of the time leap s that is more important. The
most important observation so far is that even small spatial coarse-graining, e.g., q = 10, enables temporal
coarse-graining and provides good accuracy.

5.2. Computational requirements and potential speed-up

The average time increments of the ACGMC (i.e., DtACGMC ¼ 1=
P

j�aj, summation occurs over all
processes j) and of the s-leap ACGMC (i.e., s given by Eq. (3)) are plotted in Fig. 5. s is approximately
103 times larger than DtACGMC for r = 0.1 and appears to be independent of q. In order to understand
the time scales and when is the new method really advantageous, we focus on the simpler case of equilib-
rium. Taking expected values,
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hDtACGMCi ¼ NðKaPð1� hÞ þ Kdhe
�bh �UiÞ

h i�1

ð12Þ
and
hsi ¼ r min
i¼1;...;m

ðKaPÞ�1
; ðKde

�bh �UiÞ�1
h i

; ð13Þ
where Æ æ denotes ensemble average. Here we have omitted spatial correlations and taken h �Ui to be
1
m

Pm
k¼1h �Uki. This mean-field type of analysis has been found before to give analytical estimates of

CPU in very good agreement with computational times [33]. Eqs. (12) and (13) indicate Æsæ/ÆDtACGMCæ
is independent of the cell size q as also evidenced numerically in Fig. 5. This q-independence of Eqs.
(12) and (13) can be explained physically. Since adsorption and desorption at a site are independent Pois-
son processes, the average time increment between any two events is ðKaPð1� hÞ þ Kdhe�bh �UiÞ�1. For the
entire lattice, the average time interval between any two events is scaled down by N as suggested by Eq.
(12) and is independent of the mesh used. In the s-leap ACGMC, O(q) bundles trigger in each of the m

cells in a time interval s. As the lattice gets further coarse-grained for a fixed lattice size N, the bundle
size increases (see Figs. 3 and 4) but the number of coarse cells decreases, leading to a nearly fixed num-
ber of adsorption and desorption bundles per time step. This analysis remains unchanged for a non-uni-
form mesh.

The larger time step of the s-leap ACGMC method comes at the expense of larger computational
requirements per step compared to ACGMC. The computational requirements of the two methods are as-
sessed by performing an operation count for reaching the same real time t. At equilibrium, the CPU time
for any algorithm is
tCPU ¼ Xt̂;
where X is the number of time steps (leaps for s-leap ACGMC or MC events for ACGMC) and t̂ is the
average CPU time required per step. Note that XACGMC = t/ÆDtACGMCæ and Xs-ACGMC = t/Æsæ. Thus, the
ratio of CPU times is
tCPU;ACGMC

tCPU;s-ACGMC

¼ hsi
hDtACGMCi

� t̂ACGMC

t̂s-ACGMC

. ð14Þ
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In ACGMC,
Pm

k¼1ðnk þ 1Þ multiplications are required for computing all �Ui, i = 1, . . .,m. Here nk is the
number of interacting neighbors of cell Ck. Additionally, 3m + 1 multiplications and 1 exponentiation are
required in evaluating the transition probabilities and selecting a process. For a uniform mesh of size q,
nk � 2L/q. Thus
t̂ACGMC ¼ ½mð2L=qþ 1Þ þ 3mþ 1�̂tmult=division þ mt̂exp þ 2̂trand. ð15Þ
The computational requirement is assumed to be the same for a multiplication and a division, and is
denoted as t̂mult=division. The CPU time for exponentiation and generation of a uniform random deviate
are t̂exp and t̂rand, respectively.

In the s-leap ACGMC method, after computing the transition probabilities of all processes, an addi-
tional 4m multiplications/divisions are required to determine the time leap using Eq. (3), and 4m multipli-
cations and 2m binomial random numbers are needed to select the bundle sizes. t̂ can be written as
t̂s-ACGMC ¼ ½mð2L=qþ 1Þ þ 3mþ 1�̂tmult=division þ mt̂exp þ 8mt̂mult=division þ 2mt̂binomial ð16Þ
and includes contributions from both spatial coarse-graining and the binomial s-leaping. Finally, one gets
tCPU;ACGMC

tCPU;s-ACGMC

¼ rN/
ð4þ 2L=qÞ̂tmult=division þ t̂exp þ 2̂trand=m
ð12þ 2L=qÞ̂tmult=division þ t̂exp þ 2̂tbinomial

; ð17Þ
where / is a constant
/ ¼ minfðKaP Þ�1
;K�1

d ebh
�UigðKaP ð1� hÞ þ Kdhe

�bh �UiÞ.

Using the equilibrium relation KaPð1� hÞ ¼ Kdhe�bh �Ui one gets
/ ¼ 2ð1� hÞminð1; h=ð1� hÞÞ. ð18Þ

Typically, the cost of generating a random binomial deviate is much higher than that of computing other

terms in Eq. (16), i.e., t̂s-ACGMC � 2mt̂binomial � t̂ACGMC (exceptions to this include extremely long-ranged
interactions). Therefore, based on Eq. (14) the s-leap ACGMC method has a computational advantage
only when Æsæ/ÆDtACGMCæ is large. Eq. (17) indicates that computational savings are O(rN) when L � q

or L � q. This dependence implies that s-leap ACGMC is useful especially for large size systems and when
the temporal coarse-graining factor r can be large.

The actual CPU at equilibrium vs. the temporal coarse-graining factor r is shown in Fig. 6. The CPU
comparison is performed for coarse-graining factors that give accurate solutions. Spatial coarse-graining
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lowers the computational requirements of ACGMC with respect to the microscopic KMC. Specifically,
ACGMC simulations require about 50 and 700 times less CPU time for q = 10 and q = 100, respectively,
than the microscopic KMC method to reach the same real time. The s-leap ACGMC method provides an
additional speed-up for sufficiently large values of r. The linear dependence of s on r gives a linear depen-
dence of the s-leap ACGMC CPU on r, in agreement with Eq. (17). The smaller speed-up obtained in Fig. 6
compared to the ratio Æsæ/ÆDtACGMCæ shown in Fig. 5 can be rationalized with Eq. (14). Below a certain
value of r, the s-leap ACGMC method is computationally more expensive than the ACGMC method.
The same conclusion holds true for a well-mixed system [1].

The maximum speed-up depicted in Fig. 6 is moderate (just one order of magnitude). However, as evi-
dent from Table 2 the speed-up is significant for larger lattice sizes. With N = 2 · 105 (2 · 106) and r = 0.1,
the s-leap ACGMC simulation is 102 (103) times faster than the corresponding ACGMC simulation. This
linear N-dependence is in agreement with Eq. (17). Thus, where the real advantage of the s-leap method lies
is in simulation of large systems. As an example, for a 2 mm · 1 mm lattice, one has N = 2 · 1012 sites
(assuming a microscopic lattice spacing of 1 nm). With such a system size, the s-leap ACGMC method
outperforms ACGMC by a factor of 109(roughly 30 years of an ACGMC calculation compared to 1 s
of the s-leap ACGMC method!).

Finally, the factor / incorporates the effect of coverage on speed-up and can be simplified as
Table
Comp
spatial

N

2 · 106

2 · 106

2 · 105

2 · 106

2 · 106

Here h
change
a Co
b O
/ ¼
2h; h 6 1=2;

2ð1� hÞ; h > 1=2

�
ð19Þ
for the grand-canonical ensemble. As shown in Table 2, for very low or very high coverages the efficiency of
the s-leap ACGMC method decreases because the corresponding bundle sizes are small. This analysis sug-
gests that s-leaping is more advantageous for intermediate coverages.

5.3. Absolute stability analysis of expected value

The accuracy and computational speed-up demonstrate that beyond a certain r, inaccuracies are encoun-
tered due to violation of the leap condition. A mathematical understanding of the maximum time increment
is obtained by testing the absolute stability of the algorithm in analogy to deterministic integration
methods. The concept of absolute stability was recently introduced in [27] for the Poisson based s-leap
methods using the reversible isomerization reaction in a well-mixed reactor as a test-bed problem. A stabil-
ity criterion was derived for the maximum time increment sst by writing an evolution equation for average
species populations using the s-leap algorithm. Performing the analysis with uniform time increments, one
identifies sst where the propagation coefficient grows unboundedly for long times. Here a stability criterion
2
utational time required for adsorption/desorption simulations on different uniform meshes indicating the effects of lattice size N,
coarse graining q, and rate constants (via the change in h)

q m h /a ð tCPU;ACGMC

tCPU;s�ACGMC
Þobserved Oð tCPU;ACGMC

tCPU;s-ACGMC
Þexpected

b

103 2 · 103 0.54 0.92 3700 103

104 200 0.54 0.92 1077 103

103 200 0.54 0.92 264 102

104 200 0.05 0.1 255 102

104 200 0.95 0.1 227 102

is the average coverage. The temporal coarse-graining factor is r = 0.1, the adsorption constant varies in some cases in order to
/, and the desorption constant is Kd = 1 s�1.

mputed using Eq. (18).
denotes order of magnitude, computed using Eq. (17).
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for the mean of the populations is derived for the spatial s-leap ACGMC method in the grand-canonical
ensemble.

The evolution equation at coarse cell Ck for the (n + 1)th time increment is given as
gnþ1
k ¼ gnk þ kna;k � knd;k; ð20Þ
where ka,k and kd,k denote the adsorption and desorption bundle size at Ck. Since the bundle size of the s-
leap ACGMC method belongs to a binomial distribution, the average number of firings of the jth coarse
process Rj is Æajsæ. Taking expected values, one has (see also Table 1 for the probabilities)
gnþ1
k

� �
¼ gnk

� �
þ KaPsðq� hgnkiÞ � Kds gnke

�b �Un
k

D E
. ð21Þ
For long-ranged, weak interactions this reduces (see [16] for justification)
gnke
�b �Un

k

D E
� gnk

� �
e�b �Un

kh i. ð22Þ
In this limit, Eq. (21) is written as
gnþ1
k

� �
¼ gnk

� �
þ KaPsðq� hgnkiÞ � Kds gnk

� �
e�b �Un

kh i. ð23Þ
If initial conditions are in the vicinity of the equilibrium occupancy geq = qh, a Taylor series expansion
around geq for the nonlinear term gives
gnk
� �

e�b �Un
kh i ¼ geqe

�b �U eq þ e�b �U eqð1� b�JkkgeqÞ Dgnk
� �

� e�b �U eq
X
l

l 6¼k

b�Jklgeq Dgnl
� �

þ � � � ; ð24Þ
where hDgnki ¼ hgki � geq gives the separation from equilibrium and �U eq ¼ �Jkkðgeq � 1Þ þ
P

l
l 6¼k

�Jklgeq. In

the large coarse-graining limit one approaches the mean-field limit such that geq � 1; �Jkk ¼ J 0=q and
�Jkl � 0. Therefore, �U eq ¼ J 0geq=q ¼ J 0h and Eq. (24) reduces to
gnk
� �

e�b �Un
kh i ¼ geqe

�bJ0h þ e�bJ0hð1� bJ 0hÞDgk. ð25Þ
Plugging Eq. (25) into Eq. (23) one gets
gnþ1
k

� �
¼ gnk

� �
� ðKaP þ Kdð1� bJ 0hÞe�bJ0ÞsDgk;
or
gnþ1
k

� �
¼ gnk

� �
½1� ks� þ ksgeq; ð26Þ
where k is identical with the eigenvalue of the Jacobian of the corresponding mean-field ordinary differen-
tial equation (ODE), namely,
dc
dt

¼ f ðcÞ ¼ KaPð1� cÞ � Kdce�bJ0c. ð27Þ
In Eq. (27), c(t) is the time-dependent mean-field coverage. The eigenvalue is evaluated at the equilibrium
surface coverage of the adsorbed species and its magnitude is given by
k ¼ df
dc

����
����
h

¼ KaP þ Kdð1� bJ 0hÞe�bJ0h. ð28Þ
Returning to Eq. (26) and by writing it as
gnþ1
k

� �
¼ g0k

� �
½1� ks�nþ1 þ ksgeq½1þ ð1� ksÞ þ ð1� ksÞ2 þ � � � þ ð1� ksÞn�; ð29Þ
one concludes that when n ! 1 the expected value converges to
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hg1k i ¼ geq ¼ qh; ð30Þ
provided that the propagation coefficient |1 � ks| < 1, i.e., s < sst, where
sst ¼
2

k
¼ 2

KaP þ Kdð1� bJ 0hÞe�bJ0h
. ð31Þ
The result sst = 2/k is similar to that obtained for stability analysis of the explicit Euler scheme for the
mean-field equation (Eq. (27)).

Unlike the reversible isomerization reaction in a well-mixed reactor [27], the population state affects the
maximum time increment sst through the interaction energy. Similar to Eqs. (12) and (13), the maximum
time increment in Eq. (31) is independent of the spatial coarse-graining q. The maximum time increment sst
of the s-leap ACGMC method at equilibrium is also plotted in Fig. 5, and is roughly an order of
magnitude larger than DtACGMC obtained using Eq. (3) with r = 0.1 for which accurate results are
obtained.

Figs. 7(a) and (b) show s-leap ACGMC simulations around equilibrium for fixed time increments
s = xsst. Note that the value of intermolecular potential chosen here does not satisfy the weak interaction
approximation assumed in the aforementioned derivation and serves to assess the validity of Eq. (31) for
strong interactions. For small x, the s-leap ACGMC simulation is similar to the ACGMC simulation. As
x approaches 1, entire populations are either adsorbed into coarse cells or desorbed from coarse cells and
numerical instabilities are evidenced when x > 1. Far from equilibrium trajectories starting with an initially
empty lattice are depicted in Fig. 7(c) for a spatial coarse-graining of just q = 2. The transients with r = 0.1
and x = 0.1 are qualitatively similar and errors arise when x approaches 1.
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5.4. Relation between the r-criterion and the absolute stability limit

By comparing Eqs. (13) and (31) one can relate r with the loss of stability (for simplicity we omit the term
bJ0h in Eq. (31), i.e., this is the limit of weak interactions or low coverage)
Fig. 8.
ACGM
hsi=sst ¼
r
2

min
i¼1;...;m

ðKaP Þ�1
; ðKde

�bh �UiÞ�1
h i

KaP þ Kde
�bJ0h

� �
; ð32Þ
which reduces to
hsi=sst ¼
r=2; KaP � Kde

�bJ0h;

r; KaP ¼ Kde
�bJ0h;

r=2; KaP � Kde
�bJ0h

8><
>: ð33Þ
for three limits indicated. Eq. (33) indicates that Eq. (3) with r 6 1 obeys the absolute stability limit and
rationalizes the fact that values of r up to �0.2 give reasonably accurate results.

Summarizing, it is demonstrated that the s-leap ACGMC method gives correct transients, steady state
and noise provided the time increments are not large to create numerical instabilities. The maximum time
increment at equilibrium for stable behavior in the grand-canonical ensemble is determined from the abso-
lute stability criterion given by Eq. (31). By using a time increment smaller than sst by about one order of
magnitude, stability and accuracy are ensured. The s-selection procedure following Eq. (3) with r 6 0.1
meets this requirement.
6. Canonical ensemble (diffusion on a lattice)

6.1. Accuracy

Diffusion in the presence of long attractive interactions (bJ0 = 2,L = 30) on a uniform lattice containing
m = 200 coarse cells and N = 20,000 microscopic lattice sites is studied (q = N/m = 100). The initial distri-
bution of atoms consists of a cluster of a fully covered domain on an otherwise empty lattice. The initial
coverage is shown in the inset of Fig. 8. Fig. 8 shows the Hamiltonian vs. time for two different coarse-
graining factors r. Excellent agreement between the two methods is observed.
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6.2. Computational requirements and potential speed-up

The above s-leap ACGMC simulations with r = 0.2 and r = 0.6 require roughly 11 and 34 times less
computational time, respectively, than the corresponding ACGMC simulation for the specific parameters.
In order to understand the acceleration of the s-leap method, an analysis similar to that in the grand-canon-
ical ensemble is carried out. The CPU for diffusion on a uniform mesh of cell size q is analyzed at equilib-
rium. The average time increments of the ACGMC and the s-leap ACGMC methods are
Table
Comp

N

2 · 106

2 · 106

2 · 105

2 · 106

2 · 106

Here h
a Co
b O
hDtACGMCi ¼ q2 NCme
�bh �Uihð1� hÞ

h i.
ð34Þ
and
hsi ¼ rq2C�1
m ebh

�Ui min½h�1; ð1� hÞ�1�; ð35Þ

respectively. The q2 dependence of DtACGMC is explained in terms of larger jumps possible for diffusion on a
coarse mesh [11]. Like adsorption and desorption, O(q) processes are triggered for each of the m cells;
hence, Æsæ/ÆDtACGMCæ � O(N). An operation count gives
tCPU;ACGMC

tCPU;s-ACGMC

¼ rN/0 ð7þ 2L=qÞ̂tm þ 2̂texp þ 2̂trand=m
ð15þ 2L=qÞ̂tm þ 2̂texp þ 2̂tbinomial

; ð36Þ
where / 0 is a constant, / 0 = h (1 � h)min(h�1, (1�h)�1) or
/0 ¼
h; h 6 1=2;

1� h; h > 1=2.

�
ð37Þ
Table 3 shows the effects of lattice size, spatial coarse-graining, and coverage on CPU. The ratios of CPU
times for these simulations in column 6 are in agreement with the order of magnitude speed-up predicted by
Eq. (36) given in column 7. Like the grand-canonical ensemble, the s-leap ACGMC method is useful for
diffusion on large lattices. Furthermore, s-leaping is faster for intermediate coverages and a large temporal
coarse-graining factor r.

Next we turn to non-uniform meshes. The time increment in Eq. (3) is determined by the smallest pop-
ulations with the largest transition probabilities. Due to the nature of the diffusion–transition probabilities,
this implies that for a non-uniform mesh, Æsæ/ÆDtACGMCæ is limited by the smallest cells of the mesh. For
example, s for a mesh of one small cell of size qsmall and (m � 1) large cells of size qlarge is
hsi ¼ qsmallðqsmall þ qlargeÞminðh�1; ð1� hÞ�1Þð2Cme
�bhUiÞ�1. ð38Þ
Therefore, unlike the grand-canonical ensemble, s-leaping in the canonical ensemble needs large spatial
coarse-graining for significant acceleration.
3
utational time required for diffusion (canonical ensemble) on different uniform meshes

q m h / 0a ð tCPU;ACGMC

tCPU;s-ACGMC
Þobserved Oð tCPU;ACGMC

tCPU;s�ACGMC
Þexpected

b

103 2 · 103 0.5 0.5 1045 103

104 200 0.5 0.5 3073 103

103 200 0.5 0.5 227 102

104 200 0.05 0.05 489 102

104 200 0.95 0.05 298 102

is the average coverage that is fixed. The temporal coarse-graining factor is r = 0.2 and the hopping frequency is Cm = 3000 s�1.
mputed using Eq. (37).
denotes order of magnitude, computed using Eq. (36).
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6.3. Absolute stability analysis of expected value

Unlike the adsorption–desorption, for diffusion a system of nonlinear equations is obtained for a lattice
of N sites due to the bimolecular nature of these events (see Eq. (10)). A simpler model consisting of dif-
fusion on a periodic 1D uniform lattice of three coarse cells of size q with the same initial lattice coverage h
for all three cells (see Fig. 9(a)) is considered to assess the numerical stability. The evolution equation at
coarse cell Ck for the (n + 1)th time increment from a single trajectory is given as
Fig. 9.
ensemb
increm
gnþ1
k ¼ gnk þ knm;kþ1!k � knm;k!kþ1 þ knm;k�1!k � knm;k!k�1. ð39Þ
Here knm;k!kþ1 denotes the bundle size for diffusion from coarse cell Ck to cell Ck + 1. Using the transition
probability per unit time from Table 1, one has
knm;k!j ¼
Cms
2q3

gnkðq� gnj Þe�b �Un
k . ð40Þ
Taking expected values, one has
gnþ1
k

� �
¼ gnk

� �
þ knm;kþ1!k

D E
� knm;k!kþ1

D E
þ knm;k�1!k

D E
� knm;k!k�1

D E
. ð41Þ
For long-ranged, weak interactions
gnkðq� gnj Þe�b �Un
k

D E
� gnk

� �
ðq� gnj

D E
Þe�b �Un

kh i. ð42Þ
By inserting Eq. (42) into Eq. (41) and subsequently taking a Taylor expansion of hgnkiðq� hgnj iÞe�bh �Un
k i

around the equilibrium occupancy geq = qh, one gets
gnþ1
k

� �
¼ gnk

� �
þ Cms

2q3
Dgnkþ1 � 2Dgnk þ Dgnk�1

� �
½q� bgeqðq� geqÞð�Jkk þ �JklÞ�e�bh �U eqi; ð43Þ
0.0
0.2
0.4
0.6
0.8

0 500 1000 1500 2000

C1 C2 C3C3 C1

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300

ACGMC ω = 0.1

C
ov

er
ag

e 
η 2/q

q = 100

0.2

0.4

0.6

0.8  ω = 0.4

 ω = 0.6

Time (s)

Time (s)

a

b

c

d

(a) Schematic of a lattice of three cells with periodic boundary conditions. (b–d) Test of numerical stability in the canonical
le using the s-leap ACGMC method for strong interactions with different uniform time increments of size xsst. sst is the time
ent of absolute stability. As x approaches 1, the s-leap ACGMC method gives incorrect behavior.



612 A. Chatterjee, D.G. Vlachos / Journal of Computational Physics 211 (2006) 596–615
where hDgnki ¼ hgnki � geq gives the separation from equilibriumand �U eq ¼ �Jkkðgeq � 1Þ þ
P

l
l 6¼k

�Jklgeq. For large

spatial coarse-graining, one approaches the mean-field limit such that geq � 1, �Jkk ¼ J 0=q;
�Jkl � 0 and �U eq ¼ J 0geq=q ¼ J 0h. Using the material balance gn1 þ gn2 þ gn3 ¼ 3geq in Eq. (43), one gets
gnþ1
k

� �
¼ gnk

� �
½1� ks� þ ksgeq; ð44Þ
where
k ¼ 3Cm

2q2
½1� bJ 0hð1� hÞ�e�bJ0h ¼ 3Deff

q2a2
e�bJ0h. ð45Þ
Here
Deff ¼ Dð1� bJ 0hð1� hÞÞ ð46Þ
is an effective diffusivity [16], D is the diffusion coefficient related to the hopping frequency in 1D as
D ¼ Cma2

2
, and a is the microscopic hopping distance. As n ! 1, the expected value of cell occupation con-

verges to
g1k
� �

¼ geq ¼ qh ð47Þ
provided that |1 � ks| < 1, i.e., s < sst, where
sst ¼
4q2ebJ0h

3Cm½1� bJ 0hð1� hÞ� . ð48Þ
Similar to Eqs. (34) and (35), the maximum time increment sst depends on q2. It can easily be shown that the
same eigenvalue as given by Eq. (45) is obtained from the corresponding mean-field system for the explicit
Euler scheme.

s-leap ACGMC simulations are performed on a lattice of three cells with a coverage of h = 0.5. Fig. 9
shows the coverage in the second cell. Uniform time increments are employed of size s = x sst. Note again
that Eq. (48) is assessed when interactions are strong. For small x, the s-leap ACGMC simulation is similar
to the ACGMC simulation. For x = 0.4 enhanced noise is observed over certain time intervals. When
x = 0.6, entire cell populations jump to neighboring cells resulting in huge oscillations. Overall, the stability
of the deterministic Euler scheme provides an excellent starting point for determining the maximum time
step regarding the expected value of the stochastic process as was also concluded for well-mixed systems
in [27].
6.4. Relation between the r-criterion and the absolute stability limit

By comparing Eqs. (35) and (48) in the limit of very weak interactions one can relate the temporal
coarse-graining factor r with the loss of stability
hsi=sst ¼ 3r min
i¼1;...;m

½h�1; ð1� hÞ�1�=4 ð49Þ
which reduces to
hsi=sst ¼
3r=4; h ! 0 or 1;

3r=2; h ! 0.5

�
ð50Þ
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for the particular limits indicated. Once again values of r 6 0.1 fall within the stability region and provide
accurate results, consistent with simulations employing the r-criterion shown in Fig. 8.
7. Simulations of multiple processes on non-uniform lattices

Fig. 10 shows a simulation with simultaneous adsorption, desorption and diffusion on a 1D non-uni-
form lattice of N = 388,800 microscopic sites using the ACGMC and the s-leap ACGMC (r = 0.2 and
0.4) methods. Interactions between adsorbed particles are absent. The non-uniform mesh used for this
calculation contains cells of size 100–1000, as shown in the inset of Fig. 10(a). Non-uniform adsorption
rates are set over the lattice, and the ratio of adsorption to desorption rate constants is plotted in
Fig. 10(a). Initially the surface is empty.

Fig. 10(b) shows the evolution of the spatially averaged coverage. In the presence of diffusion and spa-
tially non-uniform pressure field, a cluster with diffuse boundary is formed at long times. The steady state
coverage profile and the corresponding noise are plotted in Figs. 10(c) and (d), respectively. Excellent agree-
ment between the two methods is observed. This example demonstrates that the s-leap ACGMC method
can be used for accurate adaptive simulations. The s-leap ACGMC simulation requires roughly 24 and
48 times less computational time with r = 0.2 and r = 0.4, respectively, than the corresponding ACGMC
simulation to reach the same time (comparison is done at steady state).
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8. Conclusions

The s-leap ACGMC method was introduced that combines two stochastic multiscale simulation tech-
niques, namely, the adaptive coarse-grained Monte Carlo (ACGMC), which is a spatially coarse-grained
mesoscopic tool, with the binomial s-leap method, which is a temporally coarse-grained tool. Numerical
examples in the grand-canonical, canonical, and combined ensembles demonstrate the ability of the s-leap
ACGMC method to accurately capture spatio-temporal phenomena and fluctuations in distributed lattice
systems.

Absolute stability for the expected value and computational speed-up analyses were also performed. It
was shown that with sufficient temporal coarse-graining, the s-leap ACGMC method results in lower com-
putational requirements than the microscopic KMC as well as the ACGMC methods without compromis-
ing the accuracy of the solution. The computational savings of the s-leap ACGMC method over the
ACGMC method can be substantial, especially for large size systems, and increase linearly with increasing
lattice size and temporal coarse-graining factor r. The time increment s herein was chosen using the r-based
criterion. Model systems demonstrated that the maximum value of r is directly linked to the absolute sta-
bility of the expected value of the s-leap ACGMC algorithm. The absolute stability analysis of the expected
value can be well captured by that of the corresponding explicit Euler scheme of the corresponding deter-
ministic model.

The s-leap ACGMC method is the only discrete stochastic mesoscopic tool with simultaneous spatial
and temporal coarse-graining. The above traits enable the s-leap ACGMC method to reach large length
and time scales and study nonlinear and fluctuation-driven phenomena, such as pattern formation, phase
transitions, etc. Future work will elucidate the application of these spatio-temporally coarse-grained meth-
ods to complex systems.
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